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For each compact subset K of RN let HðKÞ denote the space of functions that are
harmonic on some neighbourhood of K : The space HðKÞ is equipped with the

topology of uniform convergence on K: Let O be an open subset of RN such that

0 2 O and RN = %OO is connected. It is shown that there exists a series
P

Hn; where Hn is

a homogeneous harmonic polynomial of degree n on RN ; such that (i)
P

Hn

converges on some ball of centre 0 to a function that is continuous on %OO and

harmonic on O; (ii) the partial sums of
P

Hn are dense in HðKÞ for every compact

subset K of RN = %OO with connected complement. Some refinements are given and our

results are compared with an analogous theorem concerning overconvergence of

power series. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

The following theorem was proved in the case r ¼ 0 by Seleznev [19] and
in the general case by Luh [9] and Chui and Parnes [5]. For extensions and
generalizations, see also [10–13, 15–17, 20–22] and for a survey of related
work, see [8].

Theorem A. Let 04r5þ1: There exists a power series
P1

n¼0 anzn of

radius of convergence r such that for every compact set K in fz : jzj > rg with

connected complement and every function f that is continuous on K and

holomorphic on the interior of K there exists an increasing sequence ðnkÞ of

integers such that

Xnk

n¼0

anzn ! f ðzÞ ðk ! 1Þ

uniformly on K :
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The phenomenon exhibited by the power series in Theorem A is called
overconvergence. Nestoridis [16, l7] considers overconvergence of Taylor
series of functions that are holomorphic on an arbitrary simply connected
domain in C and which may be smooth up to the boundary. The purpose of
this paper is to prove results of the same character as those in [16, 17] for
harmonic functions on RN ; where N52: First, we establish some notation.
If E is a non-empty subset of RN ; we denote by HðEÞ the space of functions
h that are harmonic on some open set (which depends on h) containing E: In
particular, in the case where E is open h 2 HðEÞ if and only if h is harmonic
on E: As usual, CðEÞ denotes the space of real-valued continuous functions
on E: For each n 2 N ¼ f0; 1; 2; . . .g; let Hn denote the space of all
homogeneous harmonic polynomials of degree n on RN : If h 2 HðBðrÞÞ;
where BðrÞ is the open ball of radius r centred at the origin 0 of RN ; then
there exist unique polynomials Hn 2 Hn such that

P1
n¼0 Hn converges

locally uniformly to h on BðrÞ (see e.g. [2, p. 42]). We refer to
P1

n¼0 Hn as the
polynomial expansion of h; and if

P1
n¼0 Hn is the polynomial expansion of

some function h 2 Cð %OOÞ \HðOÞ; where O is a domain containing 0, then we
write

P1
n¼0 Hn 2 PEð %OOÞ:

Theorem 1. Let O be a bounded domain in RN such that 0 2 O and RN = %OO
is connected. There exist harmonic polynomials Hn 2 Hn such that

P1
n¼0 Hn

2 PEð %OOÞ and for every compact subset K of RN = %OO with connected

complement and every h 2 HðKÞ there exists an increasing sequence ðnkÞ in

N such that Xnk

n¼0

Hn ! h ðk ! 1Þ ð1Þ

uniformly on K :

The key condition concerning K and %OO for the proof of Theorem 1 is that
K lies in the unbounded component of RN = %OO; it is not necessary to have
RN = %OO connected. Thus an apparently, though not actually, more general
formulation of the theorem is possible.

We write E8 for the interior of a subset E of C or RN ; and if EDC; then
CðEÞ denotes the set of complex-valued continuous functions on E: The
space of functions that are holomorphic on an open subset o of C is denoted
by HolðoÞ: For a compact subset K of C; Mergelyan’s theorem [14] (or see
[18, Chap. 20]) asserts the equivalence of the following statements: (i) every
function in CðKÞ \HolðK8Þ can be uniformly approximated by (holo-
morphic) polynomials, (ii) C=K is connected. Thus, the conditions imposed
on K and f in Theorem A are natural. In Theorem 1 the situation is quite
different. The condition that RN =K is connected is neither necessary nor
(when N53) sufficient for functions in CðKÞ \HðK8Þ to be uniformly
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approximable on K by harmonic polynomials. The same condition is,
however, sufficient (but not necessary) for functions in HðKÞ to be
approximable in this way (cf. Lemmas 2 and 3 for necessary and sufficient
conditions). In Section 3, we enlarge upon these remarks and examine the
extent to which the hypotheses in Theorem 1 can be relaxed.

2. PROOF OF THEOREM 1

Lemma 1. Let O be a bounded domain in RN such that BðrÞDO for some

r > 0 and RN = %OO is connected, and let K be a compact subset of RN = %OO such

that RN =K is connected. If e > 0;R > 0; m 2 N and G 2 HðRNÞ; then there

exists a harmonic polynomial F ¼
Pm

j¼0 fj; where fj 2 Hj and m > m; such

that

jF � Gj5e on K ; ð2Þ

jF j5e on %OO; ð3Þ

Xm

j¼0

j fjj5e on BðRÞ ð4Þ

and

j fjðxÞj4eð j þ 1ÞðN�2Þ=2ðjjxjj=rÞ j ðx 2 RN ; j ¼ 0; 1; . . . ;mÞ: ð5Þ

The proof of the lemma uses the fact that there is a constant CN51;
depending only on N; with the following property: if uj 2 Hj for j ¼
0; 1; . . . ; n; where n 2 N; and r > 0; then

sup
BðrÞ

jujj4CNð j þ 1ÞðN�2Þ=2 sup
BðrÞ

juj ð j ¼ 0; 1; . . . ; nÞ; ð6Þ

where u ¼
Pn

j¼0 uj: In the case where r ¼ 1 this follows easily from an
inequality of Brelot and Choquet [4]; details are given in [1]. The general
case follows from a simple dilation argument.

To proceed with the proof, let Z be a positive number such that

CNZ
Xm

j¼0

ð j þ 1ÞðN�2Þ=2ðR=rÞ j5e; ð7Þ

which clearly implies that CNZ5e: Let V1; V2 be disjoint open
sets containing %OO and K ; respectively, and define a function G0 by putting
G0 ¼ 0 on V1 and G0 ¼ G on V2: Then G0 2 Hð %OO [ KÞ: Since %OO [ K is
compact and has connected complement, it follows from Walsh’s harmonic
approximation theorem [23] (or see [7, p. 8]) that there exists a harmonic
polynomial F such that jF � G0j5Z on %OO [ K: Thus (2) and (3) hold, since
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Z5e: Let F ¼
Pm

j¼0 fj; where fj 2 Hj: We can arrange that m > m simply by
defining some of the fj to be 0, if necessary. Since jF j5Z on BðrÞ; it follows
from (6) that

j fjðxÞj5CNZð j þ 1ÞðN�2Þ=2 ðx 2 BðrÞ; j ¼ 0; 1; . . . ;mÞ;

and hence, by the homogeneity of fj;

j fjðxÞj4CNZð j þ 1ÞðN�2Þ=2ðjjxjj=rÞ j ðx 2 RN ; j ¼ 0; 1; . . . ;mÞ: ð8Þ

Since CNZ5e; (5) follows. Also, summing (8) over j ¼ 0; 1; . . . ; m and using
(7), we obtain (4).

We can now complete the proof of Theorem 1. Let K denote the set of
compact sets K with the following properties: K � RN = %OO; RN =K is
connected; K is a finite union of closed cubes each with all its vertices at
points with rational coordinates. The set K is countable; let ðKnÞ be an
enumeration of the elements of K: Also, let ðPnÞ be a sequence of harmonic
polynomials that is dense in HðRNÞ with the topology of local uniform
convergence. (For example, if Bj is a basis for Hj; we could take ðPnÞ to be
an enumeration of all finite linear combinations with rational coefficients of
elements of

S1
j¼0 Bj:) Let ððQn;LnÞÞn2N be a sequence of ordered pairs in

which each pair ðPn;KmÞ occurs. We show recursively that for each l 2 N

there exist ml 2 N and Fl ¼ fl;0 þ � � � þ fl;ml ; where fl;n 2 Hn; such that
ðmlÞ is increasing and when l51

jF0 þ � � � þ Fl � Qlj52�l on Ll; ð9Þ

jFlj52�l on %OO; ð10Þ

Xml�1

n¼0

j fl;nj52�l on BðlÞ [ L0 [ � � � [ Ll�1 ð11Þ

and

j fl;nðxÞj42�lðn þ 1ÞðN�2Þ=2ðjjxjj=rÞn ðx 2 RN ; n ¼ 0; 1; . . . ;mlÞ; ð12Þ

where r > 0 is such that BðrÞDO: We start by defining m0 ¼ 0 and F0 ¼
f0;0 ¼ 0: Suppose now that for some l 2 N the integers m0;m1; . . . ;ml and
harmonic polynomials Fj ¼ fj;0 þ � � � þ fj;mj

ð j ¼ 0; 1; . . . ; lÞ have been
shown to exist. In Lemma 1, take K ¼ Llþ1 and G ¼ Qlþ1 � ðF0 þ � � � þ
FlÞ; and let R be such that Bðlþ 1Þ [ L0 [ � � � [ Ll � BðRÞ: We find that
there exists a harmonic polynomial Flþ1 ¼ flþ1;0 þ � � � þ flþ1;mlþ1

; where
flþ1;n 2 Hn and mlþ1 > ml; such that (9)–(12) hold with lþ 1 in place of l
throughout. This completes the inductive step.
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We define fl;n ¼ 0 when n > ml and write

Hn ¼
X1

l¼0

fl;n ð13Þ

for each n 2 N: We claim that Hn 2 Hn: To verify this, let r be a positive
number and note that if l > rþ n þ 1; then n5l� 14ml�1; so that
j fl;nj52�l on BðrÞ by (11). Hence the series in (13) converges uni-
formly on BðrÞ and, since r is arbitrary, it follows that Hn 2 HðRNÞ: Since
each function fl;n is homogeneous of degree n; so also is Hn; and hence
Hn 2 Hn:

Next we prove that
P1

n¼0 Hn 2 PEð %OOÞ: Inequality (10) shows that
P1

l¼0

Fl converges uniformly on %OO: Hence the sum of this series, g say, belongs to
Cð %OOÞ \HðOÞ: If x 2 BðrÞ; then by (12)

X1

n¼0

X1

l¼0

j fl;nðxÞj4
X1

n¼0

ðn þ 1ÞðN�2Þ=2ðjjxjj=rÞn
X1

l¼0

2�l5þ1:

Hence the following change of order is justified:

X1

n¼0

HnðxÞ¼
X1

n¼0

X1

l¼0

fl;nðxÞ¼
X1

l¼0

X1

n¼0

fl;nðxÞ¼
X1

l¼0

FlðxÞ¼gðxÞ ðx 2 BðrÞÞ:

Since Hn 2 Hn and the polynomial expansion of g is unique, it follows thatP1
n¼0 Hn is the polynomial expansion of g; and hence

P1
n¼0 Hn 2 PEð %OOÞ:

In preparation for the final part of the proof, we note that if l51; then on
Ll

Xml

n¼0

Hn � Ql

�����

����� ¼
Xml

n¼0

X1

n¼0

fn;n � Ql

�����

�����

¼
X1

n¼0

Xml

n¼0

fn;n � Ql

�����

�����

4
Xl

n¼0

Xml

n¼0

fn;n � Ql

�����

�����þ
X1

n¼lþ1

Xml

n¼0

fn;n

�����

�����

4
Xl

n¼0

Fn � Ql

�����

�����þ
X1

n¼lþ1

Xmn�1

n¼0

j fn;nj

5 2�l þ
X1

n¼lþ1

2�n ¼ 21�l;

by (9) and (11).
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Now let K be a compact subset of RN = %OO with connected complement. We
show that K � Km for some m: Let O0 be an unbounded domain such that
O � O0 and K � RN = %OO0; and let d be a rational number such that 05d

ffiffiffiffiffi
N

p

5distðK ; %OO0Þ: Let C be the collection of closed cubes of side-length d with
vertices lying in the lattice fdy : y 2 ZNg: Let M be the union of those
elements of C that have non-empty intersection with K : Then M \ %OO0 ¼ |;
so %OO lies in the unbounded component of RN =M: Let #MM denote the union of
M with the bounded components of RN =M: Then #MM is a finite union of
elements of C and RN = #MM is connected and contains %OO: Thus #MM ¼ Km for
some m: Also KDMD #MM:
Let h 2 HðKÞ and let e > 0: It is enough to show that there exists an

arbitrarily large l such that

Xml

n¼0

Hn � h

�����

�����5e on K :

By Walsh’s theorem, there exists h0 2 HðRNÞ such that jh � h0j5e=3 on K :
Since ðPnÞ was chosen to be dense in HðRNÞ; there exist infinitely many n
such that jPn � h0j5e=3 on K : Hence there exists l; as large as we please,
such that KDLl; jQl � h0j5e=3 on K; and 21�l5e=3: Collecting results
together, we find that on K

Xml

n¼0

Hn � h

�����

�����4
Xml

n¼0

Hn � Ql

�����

�����þ jQl � h0j þ jh0 � hj

¼ 21�l þ e=3þ e=35e;

as required.

3. IMPROVEMENTS OF THEOREM 1

At the end of Section 1 we indicated that some relaxation is possible in the
hypotheses concerning K and h in Theorem 1. By invoking some recent
results on uniform harmonic approximation, which are stated below as
lemmas, we now show precisely the ways in which these hypotheses can be
relaxed. For the concept of thinness, which appears in the lemmas, we refer
to [2, Chap. 7]. If K is a compact subset of RN ; then we denote by #KK the
union of K with all the bounded connected components of RN =K :

Lemma 2. Let K be a compact subset of RN : The following are equivalent:

(a) for each u in HðKÞ and each positive number e there exists v in

HðRNÞ such that ju � vj5e on K ;

(b) RN = #KK and RN =K are thin at the same points of K :
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Lemma 3. Let K be a compact subset of RN : The following are equivalent:

ða0Þ for each u in CðKÞ \HðK8Þ and each positive number e there exists

v in HðRNÞ such that ju � vj5e on K ;

ðb0Þ RN = #KK and RN =K8 are thin at the same points of K :

Lemma 2 is a refinement of Walsh’s theorem and is the harmonic
analogue of Runge’s classical theorem on holomorphic approximation.
Lemma 3 is the harmonic analogue of Mergelyan’s theorem. Both lemmas
are special cases of theorems of Gardiner [6], and they can also be derived
from results of Bliedtner and Hansen [3]. A convenient reference is [7,
Theorems 1.10 and 1.15]. Lemmas 2 and 3 easily yield the following
improvements of Theorem 1.

Corollary 1. Let O be a bounded domain in RN such that 0 2 O and

RN = %OO is connected. There exist harmonic polynomials Hn 2 Hn with the

following properties:

(i)
P1

n¼0 Hn 2 PEð %OOÞ;
(ii) for any compact set K such that #KK � RN = %OO and RN =K and RN = #KK are

thin at the same points of K ; and for any h 2 HðKÞ; there exists an increasing

sequence ðnkÞ such that (1) holds uniformly on K :

(iii) for any compact set K such that #KK � RN = %OO and RN = #KK and RN =K8
are thin at the same points of K ; and for any h 2 CðKÞ \HðK8Þ; there exists

an increasing sequence ðnkÞ such that (1) holds uniformly on K :

To prove Corollary 1, let the harmonic polynomials Hn be as in Theorem
1 and suppose first that K and h are as stated in Corollary 1(ii). If e > 0; then
by Lemma 2, there exists g 2 HðRNÞ such that jg � hj5e=2 on K : Since #KK is
a compact subset of RN = %OO and RN = #KK is connected, there exist arbitrarily
large integers m such that j

Pm
n¼0 Hn � gj5e=2 on #KK ; and hence j

Pm
n¼0 Hn �

hj5e on K ; as required. The same argument, with Lemma 3 replacing
Lemma 2, shows that if K and h are as in Corollary 1(iii), then the same
conclusion holds.

It is natural to ask whether the hypotheses on K and h in Theorem 1 can
be made exactly analogous to the hypotheses on K and f in Theorem A: in
Theorem 1 can we replace ‘‘h 2 HðKÞ’’ by ‘‘h 2 CðKÞ \HðK8Þ’’? When
N ¼ 2 the answer is affirmative, and we can even relax the condition that
R2=K is connected.

Corollary 2. Let O be a bounded domain in R2 such that 0 2 O and

R2= %OO is connected. There exist harmonic polynomials Hn 2 Hn with the

following properties:

(i)
P1

n¼0 Hn 2 PEð %OOÞ;



D. H. ARMITAGE232
(ii) for every compact set K such that #KK � R2= %OO and @ #KK ¼ @K and every

function h 2 CðKÞ \HðK8Þ; there exists an increasing sequence ðnkÞ such

that (1) holds uniformly on K :

Note that the hypotheses on K are obviously satisfied if K � R2= %OO and
R2=K is connected. When N ¼ 2 conditions (a), (b), ða0Þ; ðb0Þ of Lemmas 2,3
and the condition @ #KK ¼ @K are all mutually equivalent (see [7, Corollary
1.16]), so Corollary 2 is a reformulation of Corollary 1 in the case where
N ¼ 2:

Corollary 2 does not extend to higher dimensions. To prove this, note first
that there is a compact set L in R2 such that L8 ¼ | and yet R2=L is thin at
some point of L (see [6, Example 1.2]). Define K ¼ L � ½0; 1�N�2; where
N53: Then K is a compact subset of RN ; K8 ¼ |;RN =K is connected, and
RN =K is thin at some point of K : A proof of this last assertion can be given
by using [2, Theorem 7.8.6] and induction on N: By translating, if necessary,
we may suppose that 0 =2 K : If Corollary 2 were true in RN ; then every
element of CðKÞ \HðK8Þ would be uniformly approximable on K by
harmonic polynomials. But such approximation is impossible, since K does
not satisfy condition ðb0Þ of Lemma 3.

We conclude with a variant of Theorem 1 in which the set O does not
appear; it corresponds to the case r ¼ 0 of Theorem A.

Theorem 10: There exist harmonic polynomials Hn 2 Hn such that for

every compact subset K of RN =f0g with connected complement and every

h 2 HðKÞ there exists an increasing sequence ðnkÞ such that (1) holds

uniformly on K :

We omit explicit statements of corollaries of Theorem 10 corresponding to
Corollaries 1 and 2 above.

We indicate the changes in the proof of Theorem 1 that are required
in order to prove Theorem 10: The following result is a consequence of
Lemma 1.

Lemma 10: Let K be a compact subset of RN =f0g such that RN =K is

connected. If e > 0; R > 0; m 2 N and G 2 HðRNÞ; then there exists a

harmonic polynomial F ¼
Pm

j¼0 fj; where fj 2 Hj and m > m; such that (2)
and (4) hold.

Now let the sequence ðQn;LnÞ of pairs be as in the proof of Theorem 1,
except that in defining the class K; to which the compact sets Ln belong, we
replace the requirement that K � RN = %OO by K � RN =f0g: Using Lemma 10;
we can show by a recursive construction similar to that in the proof of
Theorem 1 that for each l 2 N there exist ml 2 N and Fl ¼ fl;0 þ � � � þ fl;ml ;
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where fl;n 2 Hn, such that ðmlÞ is increasing and (9) and (11) hold when
l51: Defining fl;n ¼ 0 when n > ml and then defining Hn as in (13), we
again find that Hn 2 Hn: The proof of Theorem 10 can now be completed by
arguments similar to those in the closing paragraphs of Section 2.
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